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ABSTRACT

There are two methods which have been developed inde-

pendently for computing network sensitivities. Both computa-

tions may be carried out in the frequency or in the time

domains. One method involves the analyses of two networks -

the original and its mutually reciprocal adjoint. The second

method uses a sensitivity model for the circuit. It is shown

that the sensitivity model and the mutually reciprocal adjoint

circuit are essentially the same; the sensitivity model being

useful for calculating single parameter sensitivity in the

time domain, the adjoint circuit being useful for calculating

sensitivity for several parameters in the frequency domain.
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I. INTRODUCTION

The subject of sensitivity is one of the oldest areas

where electrical engineers have made extensive studies. A

great amount of research work has been done and in almost

every technical journal articles have been published concerning

different approaches to network sensitivities. This subject

received new impetus when the digital computer was made

available to almost every electrical engineer. With the aid

of the computer, different approaches to computer aided

circuit design have been outlined using-sensitivity models or

the mutually reciprocal adjoint network.

Starting with the definition of "Interreciprocity," S. W.

Director and R. A. Rohrer [Ref. 1-41 developed the idea of

automated network design and sensitivity calculations for

linear, time invariant, and later for nonlinear, time variant

circuits, using the reciprocal adjoint network. The calcu-

lations can be carried out in the frequency or in the time

domains, although time domain calculations are involved.

Computations of the sensitivity due to changes in all network

parameters require the simultaneous analysis of two networks,

which is easily accomplished with the aid of a digital computer.

The other approach to network sensitivity makes use of

sensitivity models as developed and published by J. V. Leeds

and G. I. Urgon [Ref. 5]. These results were extended later

by S. R. Parker [Ref. 6] to nonlinear time-variant circuits.

Using sensitivity models the changes of an output quantity
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due to variations of one circuit parameter are easily achieved.

For complicated networks the computations of the sensitivity

due to changes in all aetwork parameters are more involved.

The computations are carried out in the frequency and the time

domains equally well.

It is the subject of this thesis to show that both

approaches to network sensitivity are not independent. First

a careful review of the mutually reciprocal adjoint network

is given. As a new result a topological relationship between

the original network and its adjoint, including dependent

sources and independent sources, is presented as noted. After

that the relations and transitions between the adjoint network

approach to sensitivities and the sensitivity model are shown.

Finally the advantages and disadvantages of both methods are

discussed.
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II. THE MUTUAL INTERRECIPROCAL
ADJOINT NETWORK

The interreciprocity property of an original network N

and its mutual adjoint network N is an important extension

of the reciprocity theorem used for computation of multi-

parameter sensitivities and automated network design. As

defined by Director and Rohrer [Ref. 1] the properties are

summerized in the following paragraph.

A. THE ADJOINT NETWORK

For any general network N containing arbitrary multi-

terminal or two-port elements with parametric representation

(lumped parameters), there exists an adjoint network N which

has the same topology, but not necessarily the same element

types, in corresponding branches.

1. The Linear Time Invariant Case

Director and Rohrer [Ref. 2 and 3] developed the

adjoint network N as being identical to the original network

with the following exceptions:

a) All gyrators in N with gyration ration, a, become gyrators

in N with gyration ration, -a, (polarity reversed).

b) All voltage controlled voltage sources in N become current

controlled current sources in N and voltage amplification factor,

p, becoming current amplification factor, -p.

c) All current controlled current sources in N become voltage

controlled voltage sources in N with controlling and controlled

branches reversed in N and current amplification factor, h,

becoming voltage amplification factor, -h.
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d) All voltage controlled current sources and current

controlled voltage sources have their controlling and controlled

branches reversed in N.

e) A.ll independent sources are set to zero. For computations

of sensitivities of network functions, excitations with unity

sources at specified terminals are explained in a later

paragraph.

f) In the frequency domain no changes occur in the excitation

of the two networks. In the time domain, time in the adjoint

network runs backwards.

If the two-port coupling elements such as transformers,

gyrators, and dependent sources are defined by algebraic

relations among their port voltages and currents, then these

relations can be summerized as shown in Fig. 1. The ideal

transformer, the voltage controlled voltage source, and the

current controlled current source are described by the hybrid

matrix. The gyrator is expressed either by the impedance or the

admittance matrix. The current controlled voltage source is

defined by the impedance matrix, and the voltage controlled

current source by the admittance matrix. In Fig. 1 the first

subscript is defined as follows:

i - input branch

o - output branch

The second subscript denotes the kind of two-port element and

is defined as follows:

- voltage dependent voltage source

h - current dependent current source

12



g - voltage dependent current source

* - current dependent voltage source

* - ideal transformer

* - gyrator

The second subscript is omitted in the matrix representation

but will be used later.

Let the voltages and currents belonging to branches

in the mutual reciprocal adjoint network be defined by

V XYand 1lVxy an xy

respectively. The subscripts, xy, are explained as used later

on.

The transformation of all passive circuit elements

from the original network N into its corresponding adjoint N

can then be summerized as shown in Fig. 2a and b. These

transformations are valid for any linear time invariant network.

As stated before, for sensitivity calculations all independ,..-

sources in the origio'al and its adjoint network are set to

zero.

2. The Linear Time Variant Case

The adjoint network, N, of the original network N

for the linear time variant case is defined by Director and

Rohrer [Ref. I) as follows:

a) All time invariant elements of N become elements in N

as described in the previous paragraph.

b) All time varying resistors, gyrators, transformers, and

controlled sources of N are time varying in N. The

13



transformations are according to the rules governing the

corresponding time invariant elements.

c) Time varying capacitors, C(t), of N become time varying

capacitors, C(T), of N shunted by a time varying conductance,

G(T), in mhos equal to the value of the time derivative of

the capacitor.

d) Time varying inductors, L(t), of N become time varying

inductors, L(T), of N in series with a time varying resistance,

R(T), in ohms equal to the derivative of L(t) with respect to

time.

e) Time varying coupled inductors and their adjoint

equivalent are shown in Fig. 3c.

f) In the time domain calculations, time in N runs backwards

relative to time in N. If the initial time is defined by to,

the final time by tf, and the running time in N by t, then the

time in N is given by

= to + tf o f (1.1)

g) The adjoint network for frequency calculations is identical

to the adjoint network in the time domain, except there is no

backward running time. For the sensitivity calculations the

network analyses of both networks has to be carried out at

each frequency point simulataneously.

h) All independent sources are set to zero. The network

excitations, for specific sensitivities of a network function,

are discussed later.

14
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d) Current Dependent Current Source
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f) Gyrator
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Original Network,N Adjoint Network,N
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L (t)

L(T)=L(t) I
t=

b

+ - aI(T

V1 (T) =M(t)~ __- 1 2 (T) V2 (T) =MM)I t. 1

L(t) L2(t L (t 2 (.()
L1(-

Figure 3: Adjoint Transofrniation of Time Varying Elements
a) Capacitor
b) Inductor
c) Coupled Inductors
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B. THE INTERRECIPROCAL THEOREM

The interreciprocal property of an original network N

and its adjoint N as defined by Director and Rohrer [Ref. 1]

is a generalization of the reciprocity theorem. This extension

applies to a network and its adjoint consisting of resistors,

capacitors, inductors, coupled inductors, transformers, gryators

and controlled sources. The reciprocity theorem defines a

network to be reciprocal if it has the following property:

If an excitation E is applied at one pair of terminalsg

in N and a response 12 is measured at some second pair of

terminals of the same network, interchanging the points of

excitation and response, keeping E the same, does not changeg

the response 12 at the original port (Fig. 4).

An original n-port network N and its n-port adjoint N

are said to be interreciprocal if the following conditions are

satisfied:

Considering first the frequency domain case. For any

excitation Ek(s) at some terminal pair k of the original

network N the response at another terminal pair n is I n(s).

The excitation at all other ports is zero. Exciting the adjoint

network at terminal pair n with the sour Vn (s) such that

Vn(s) = Ek(S) (1.2)

yields the response

Ik(S) In(S) (1.3)

at terminal pair k of N.

18
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Figure 5: Original Network N and its Adjoint N
excited in Reciprocal Manner. Time
Domain Case
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For time domain considerations let the excitation voltage

at port k of N be ek(t) which forces a current response in(t)

at the terminal pair n. Exciting the adjoint at its port n

with a voltage source

Vn(t) I = ek(t) T = t0 + tf-t (1.4)t=T0

yields the current response ik (T) at terminal pair k of N

such that

i k(t)l = = i n(t)(i5

The voltage and current excitations at all other terminal pairs are

zero (Fig. 5). If these conditions (1.2 through 1.5) apply

to all possible pairs of terminals of both networks then they

are said to be interreciprocal.

One sufficient condition for an original network and its

adjoint to be interreciprocal is that the circuit consist of

linear time invariant parameters only.

C. DEFINITION OF THE ADJOINT NETWORK IN TERMS OF TOPOLOGICAL
RELATIONSHIPS

The interreciprocity theorem applied to a network and its

adjoint, implies certain restrictions on the transformation of

elements from one circuit to the other. It results in very

strict relationships between the original network and its

adjoint. As discussed by Parker and Barmes [Ref. 7] the branch

relations of the original network can be expressed by the

following matrix equation

20



+ (2.1)
YI1 L 1 i 2 L Y v2

where v1 and i are defined as link voltages and currents,

respectively. v2 and i2 are branch voltages and currents,

respectively. They are defined by the following vectors

"vs"  "is]

v vR and 4i1  = i R (2.2)

V L] iL]

v2  = G  and i2 = i G  (2.3)

2 rvF d i

where the subscripts denote the following:

C - tree branch capacitances

G - tree branch conductances

r - tree branch (excess) inverse inductors

S - link (excess) susceptances

R - link resistors

L - link inductors

Independent sources consist of voltage and current sources as

defined by the following vectors:

e eR and J = JG (2.4)

eLJ
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where es, eR, and eL are independent voltage sources contained

in fundamental loops defined by susceptances, resistors, or

inductors, respectively. Jc' JG' and j, are independent current

sources associated with fundamental cutsets defined by capacitors,

conductors or inverse inductors, respectively. The latter

can be neglected in the adjoint network because all independent

sources are set to zero. Only indpendent sources relevant to

the computation of the sensitivity are inserted. These appear

as unity sources in a reciprocal manner in the original network

and its adjoint as discussed later.

The two partitioned square matrices (2.1) contain various

elements as follows:

Ml = (i + I)] = [r I ]
(2.5a,b,cd)

Y1 =  [gil L 1 = [(hl1 +  I)]

and

Z = r M =F)]

L = [(h - Ft )] Y = [g] (2.6a,b,c,d)

where

M1 consists of voltage dependent voltage sources plus

the identity matrix

Z1 contains current dependent voltage sources

Y1 is composed of voltage controlled current sources

L1 consists of current dependent current sources plus

the identity matrix

Z contains the remaining current dependent voltage sources

22



M contains the other part of voltage dependent voltage

sources plus partitioned topological F matrix elements

L consists of further current dependent current sources

plus the negative transposed elements of F

Y is composed of all remaining voltage controlled

current sources. Using (2.2) (2.3) (2.5), and (2.6)

in (2.1) with e =j = 0 yields

PSS ISR ISL Ir Cr SG r rV 5

I VR

RS1 RPR Cr RGr R vR
1 LS PLR PLL r L LG rLr 1 - vL

---- ---- -------- + 4- ---
h h h 1 II

IC 9C CL C CG Ci L 1
I*
tG GR L h GCh Gh GriG

91g rR grL I h rc h rG h rr rp

r SS r SR rSLI PSC PSG S. 0 0 0 11F SC 0 0 SI I-IS
rRS rRR RLI P RC 1PRG lPjr FRC FRG 0I
rLS Lr LIL G LC LG r L

------ ----------- - ---------------------- -

t t I
he hC hci G Fs ~FR F 1 0 0 0

hG h h I gg ~~ 0 -Ft -Ft 110 0 0 VG
GSGR GLI C1 G RG LG1

h h hig g g' 0 0 -Ft1 0 0 0 v
L s R 1'L1  gr G gr rJ FJ

(2.7)

where the double subscripts indicate the kind of elements between

which the dependency exists.

The basic transformation from the original to the adjoint

contains no changes for all passive circuit parameters. Voltage

23



controlled voltage sources become current controlled current

sources with current amplification factor, -p, with the roles

of controlling and dependent branches reversed. This operation

corresponds to the following matrix manipulation

-No.----(2.8)

and

-- low --- - - (2.9)LJ
A similar transformation holds for current dependent current

sources so that

--.. -- oil ---- (2.1i0)
Ih

L i L -
and

(2.11)

Voltage dependent current sources and current dependent voltage

sources with amplification factor, g, and amplification factor,

r, respectively remain, but in both cases the roles of depending

and controlling branches are reversed. This operation

corresponds to the transposition of the corresponding submatrices

so that

24



---- - 01(2.12)9ti

SLi J
and rl _ r tj

---- (2.13)

Equation (2.1) in partitioned form and omitted independent

sources gives

1 I !fi [[l Vi [o F i 1~

+ • + (2.14)91glh i -Ft 0"

h~j J [iJ L gJ [LF Jv

Using the matrix transformation as shown in (2.8) through (2.13)

in (2.14) yields the branch relations of the mutual reciprocal

adjoint network

-hl t -h t 0 F "i

1 ] + [I].1 + (2.15)
t _ P i2 _ Vt t -F t  0

Rearranging and using (2.5) and (2.6) in (2.15) gives the final

result

1 1 1• (2.16)
t-M i -Mt  Y v 2

25



Compared with (2.1) shows an easy and compact relationship

between the original network and its adjoint.

D. USE OF THE ADJOINT NETWORK FOR SENSITIVITY CALCULATIONS

R. A. Rohrer and S. W. Director [Ref. 1, 2, and 4] have

shown that the sensitivity of any network function with respect

to changes of one or all network parameters requires the

analysis of the original circuit and its mutual reciprocal

adjoint.

If any network function is denoted by H(jw), then inserting

current or voltage sources of one ampere or one volt, respec-

tively, at particular ports of N and N, excited in a reciprocal

manner, H(jw) becomes, a network function as shown in Table 1.

TABLE 1. Definition of the Network Emmittance Function.

Terminal Conditions Terminal Conditions
Original Network Adjoint Network

H (jw) N N

port k port 1 port k port 1

Driving Point Impedance Current I Open or Current Open or
at port k source Short source Short

(1 amp) (lamp)

Driving Point Admit- Voltage Open or Voltage Open or
tance at port k source Short source Short

(ivolt) (ivolt)

Transfer Impedance Open Current Current Open
between port k and 1 source source

(l amp) (lamp)

Transfer Admittance Short Voltage Voltage Short
between port k and 1 source source

(ivolt) ( volt)

Current Transfer Ratio Current Short Short Voltage
source source
(l amp) (1 volt)

Voltage Transfer Ratio Voltage Open Open Current
between port k and 1 source Source

(1 volt), (1 amp)
26



The normalized sensitivity (due to the insertion of unity

current or voltage sources) of any network function (as defined

in TABLE 1) with respect to all element types, is obtained in

terms of voltage and/or current responses in the corresponding

branches of N and N. The sensitivities are defined in TABLE 2.

TABLE 2. Sensitivities of a Network Function

Variable Network Sensitivity of

Parameter Network Function

Resistances aH = -IR(jw) O W)DR R R

Conductances = VG (jw) ,VG

H =_jwiL (jw) ,I (jw)
Inductances L L ILw

aH = jw (jw).V Ow)]
Reciprocal inductances - l/[jwVrF j)Vr

Capacitances 3H jwV (jw) V(jw)

Elastances (jw) (jw)]

Transformers (turns ratio 3- = (I (iw) V (jW)+V Ow).
n:l) on in in

I (jw))
on

Gyrators (gyration ratio: 3H + (I (jw)I (jw)-I (jw).
a) 3 i(w o o

Iia(jw))

Voltage controlled voltage 7 = -Vi(jw)I o(jw)
sources (voltage ampli-
fication ratio: p)

Voltage controlled current 3 = V. (jw) V (jw)
ag ig ogsources (transconductance:

g)
aH ~

Current controlled current - = Ii(Jw),Voh(JW)
sources (current ampli-

fication ratio: h)

Current controlled voltage - = -Iir(jw)' I  ( j w)
source (transresistance: r) or

27



III. SENSITIVITY MODELS

The sensitivity model approach to network sensitivities

for linear circuits was developed by J. V. Leeds and G. I.

Urgon [Ref. 5] based upon an idea first presented by R.

Tomovic [Ref. 8]. These results were extended to nonlinear

circuits by S. R. Parker [Ref. 6]. In general, the sensitivity

model is topologically identical to the original circuit. All

independent sources are reduced to zero. An excitation voltage

or current source, depending on the variable parameter, x, has

to be placed in series or in parallel with x, in such a direction

as to oppose the normal current flow in that branch. The value

of that source depends upon the current or voltage response

of the branch of x in the original network. The responses of

the sensitivity model are in turn the required sensitivity

function.

A. DEFINITION FOR THE LINEAR CASE

For the different element types the sensitivity model

equivalent element and its corresponding excitation is

summerized in Table 3 as taken from S. R. Parker [Ref. 6].

28



TABLE 3. Sensitivity Models and their Excitations for the
Linear Network

a) RESISTIVE ELEMENT b) CONDUCTIVE ELEMENT
SVG

R R e

eq e

R eq 1 eq

eeq = R jeq = G

V R iR= ii G v

c) CAPACITIVE ELEMENT

Da 3a

Daa

C e
aa eq eq

jeq

Ceq C2

_av C d 1 av
jeq at- at-~ (C2vC) eeq C2a
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d) INDUCTIVE ELEMENT (WITH MUTUAL COUPLING)

_______________ VL_________

L lle aa2eqie

r L 22eq V 21eq V 22eq

.4 ~r

LIleq = I1I lleq dit

dir

Ml2eq =L 1 2  v l2eq di

N dt

di L

Di21eq L L2 1  v2leq dt

di
22eq 22 2e

dt

dL= (L ii + L iir

yr = (LliL + L22ir
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e) RESISTIVE HYBRID ELEMENT

aV R H H2 Gej

aalleq 4 4a

Hel2eq

ile H1 22e 2

Ri~ e H e Hv H

H 12e 2l 22eq 2e

e~ = 1  
ieq

H leq 1 H21eq = HG2

e VGq i 2eq=V

el2eq VG 2leq = R

V R =H 11 iR + H 12 vG

G H21 iR +H22 vG
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B. DEFINITION FOR THE NONLINEAR CASE

For the nonlinear circuit the sensitivity model equivalents

and their excitations are summerized in TABLE 4 as taken from

S. R. Parker [Ref. 6].

TABLE 4. Sensitivity Model and Their Excitation for the
Nonlinear Case

a) RESISTIVE ELEMENT b) CONDUCTIVE ELEMENT
__ av G

aVR G

~A ~ f \ ~iG G e
a R K Xe 3a

R eq eq -4

R3a av (iR)G aiG (veg~)

eq ai R eq aV G

av R(i R'c) 9i G (V Ga)
e eq = act 3eq= act

V R = vR(i Rc) 1 G iG (VG a)

c) CAPACITIVE ELEMENT
3V C ;V C_____

a C a
1 eg

a3a

aiC eq eq

je aQ(vc,a)
eq av

DvRaiRc) . ai G (v , a)

Req - e eq = C av

eeqv= at) eq act

v avQ(vC ca)

32
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d) INDUCTIVE ELEMENT (WITH MUTUAL COUPLING)

aVL

l2eq) 2leq

r 22eq av 2eq V 22eq

Llleq al ).leg

M a12 (,a a d;0l2 (rla))
12eq = l2eq a

go ~ 2 1(i L'a) a a02l('L' a)
M21eq al 21eq= i

'0a22  a022()r=a)L22eq ai 22eq at-

VL =at [p11,~

aVyr at5 [p2 1(lIa) + 2(rx)
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e) RESISTIVE HYBRID ELEMENT

VR e G
ll2eq

H 21eq 322eq 321eq

e le

H - hil(iR~L Hh h(vG)
Hlleq aV Ra 22eq 2 aV G'r

ah 12 (v G'c) aV G ah 2 1(i R'c) a'R
H leq av @aH21eq a

G R

Dhll(viRh()a

"l2eq 1221eq = ___e_ 21 _R

V R = h 11(i Rlc) + h 1 2 (vG'a)

SG= h 2 1 i R a) + h 22 (vG'ct)
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IV. RELATIONSHIP BETWEEN THE SENSITIVITY MODEL
AND THE MUTUAL ADJOINT NETWORK APPROACH TO SENSITIVITY

To compare the two methods it is first shown how network

sensitivities are obtained using Tellegen's theorem in conjunc-

tion with an original network, the mutual reciprocal adjoint,

and the augmented original network. Following this derivation,

sensitivity models are shown to be a special case of the

mutual adjoint network.

A. PROOF OF NETWORK SENSITIVITIES USING THE ADJOINT NETWORK

AND TELLEGEN'S THEOREM

In chapter II it was stated that the sensitivity of a

network function is obtained using the response of an original

network and its adjoint. A proof is presented now.

Consider the network of Fig. 6a, excited with a voltage

source E at port 1. At port 2 the voltage response is V2 '~g

Fig. 6b represents the same circuit with all of the elements

augmented. It is excited with an identical voltage source Eg

at port 1. The voltage response at port 2 is V2 + AV2 . Fig.

6c represents the adjoint of the original circuit excited in

reciprocal manner. In Fig. 6, Xa, represents any kind of one-

port passive network parameter. To apply Tellegen's theorem,

the port voltages and currents of the augmented original circuit

and the adjoint network are tabulated as follows:
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Figure 6: Reciprocal Two Port Networks
a) Original ,etwork,44
b) Augmented Original Networ:
c) Mutual Reciprocal Adjoint 1Network,N
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Aug. Orig. Network Rec. Adjoint Network

Voltage Current Voltaqe

Port i: Eg I! + Al 0 I1 = -V2

Port 2: V2 + AV2  0 V2  12 = E

int. netw.: V + AV I + AI V I

Multiplying and adding the corresponding terms as shown above

yields

-EgV2 + (Va + AVa)I + EgV 2 + AV 2 Eg = 0 (4.1)

(I + AI )V = 0 (4.2)
a aa

Equating (4.1) and (4.2) and rearranging, results in the basic

expression from where the proof starts for different kinds of

network parameter.

(I a + AIa) Va - (V a + AVa )I a - EgV 2 = 0 (4.3)

1. Passive Network Parameters

The proof is presented for impedance, inductive, aind

capacitive param'rters only.

The constraints for the impedance case are

V =Z I
a aa

Va =Z Ia  (4.4)

AV= AI Z + I AZ
a a3a a a
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Substituting (4.4) in (4.3) and rearranging gives

AV2 Eg = -l aAZa (4.5)

Letting the excitation be a unit voltage or current source,

respectively, E = 1, leads tog

AV2 = -II aAZa (4.6)

or

AV2  a

Z = -I I (4.7)

Equation (4.7) gives the sensitivity of the output voltage

with respect to changes in one impedance parameter. Multiplica-

tion of the current through the variable impedance in the

original network, Ia, and the current through the corresponding

parameter in the adjoint network, Ia, is done conveniently in

the frequency domain.

For the capacitive parameter the constraints are

dV

dt

I = C a = jwc a (4.8)
dt

Al = jwAV C + jwV ACa

Substituting these constraints into (4.3) and solving for

AV2Eg results in

AV2Eg = jwVaV ACa (4.9)
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Letting the excitation source E equal to one givesg

AV2
AC = jwVaV (4.10)

a

Equation (4.10) is the sensitivity of the output voltage of the

original network, N, with respect to perturbations in one

capacitive network parameter.

Finally the derivations for changes in an inductive

element are shown. The auxiliary equations are

~ dI
V = L a - jw L aIa

dt

dIa

Va = 1 - -  = jw LaI (4.11)adt

AV = jwI aAL + jwAIa La

Substituting (4.11) into (4.3) and solving for AV2Eg gives

AV2 Eg = -jwI IaALa (4.12)

Assuming the excitation sources, Eg, equal to one gives

AV2  (
L -jwI I (4.13)

a

Equation (4.13) gives the incremental changes in output voltage

due to variations in one inductive element in the original

network.

These results agree with the given relations in

TABLE 2, developed by Director and Rohrer. For better comparison
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the corresponding expressions to equation (4.7), (4.10), and

(4.13) are repeated here

9H~
R= IRCJw)IRCjw)

DH~

aH~DL - -jw L (jw) I L (jw)

If the sensitivity of the output voltage depends on

variations of all network parameters, the increments are added,

applying the principle of superposition. The summations are

taken over all corresponding network parameters. (4.7), (4.10)

and (4.13) then become

AV2 = -EI I AZ
a

AV2 = jwV aVaACa (4.14a,b,c)
a

AV2 = -EjwI I ALa
a

2. De-pendent Sources

As an example for all four kinds of dependent sources,

the derivation for the voltage dependent voltage source is

presented. The proof for the three others is quite similar. In

Fig. 7a the original network, excited by a voltage source Eg

at port 1 and its adjoint (Fig. 7b), excited in a reciprocal
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Figure 7: Reciprocal Two Port Networks Containing
Voltage Dependent Voltage Sources
a) Original Network,N
b) Mutual Reciprocal Adjoint Network,N
c) Augmented Original Network
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manner, are shown. Fig. 7c represents the augmented original

circuit excited by the same voltage source, E . In Fig. 7c

the incremental voltage change, AVOil, is defined as follows

AVop = AVi + Vi A) (4.15)

The ports and the internal voltages and currents for the

augmented original and the adjoint network are tabulate and

then Tellegen's theorem is applied

Aug. Orig. Network Rec. Adjoint Network

Voltage Current Voltage Current

Port 1: Eg I1 +A I1  0 11 = -V2

Port 2: V 2+AV2  0 V2  12 = E

Internal

Controlled ~
Side : (Vi +AV ) 0 Vi -11o1

Dependent
Side : (Vo +AV 0) (Io +AI o) 0 op

Multiplying the inner and the outer columns as shown above

yields

Outer Product:

-Eg V2 + (V2 + AV2 )Eg + E (V. P+ AXV ) (-I

(4.16)
+ E (V + AV + AV ) 0

i 0/o 1 o0 o1 011

Inner Product:

E = 0 (4.17)
241/014
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Where the summation is taken over all branches of dependent

sources, controlling and dependent side. Multiplying out

equation (4.16), rearranging and cancelling yeilds

EgAV 2 + E (-ViPIO - AV ipiO + Vop Io
g i. p o o o

(4.18)

+v O I) = 0

Substituting

Vo = pVi
Vop =) ill

and eliminating equal terms leads to

E AV2 + E (-AV ipi1 + AVo Io) = 0 (4.19)

g2 ip/op 1. 1 po

Substituting (4.15) into (4.19) gives

E AV2 + E (- ViPo + (PAVi + Vi Ap)Io) = 0 (4.20)

ip/op

Multiplying out and cancelling results in

EgAV 2 + E Il = 0 (4.21)ill/op i~i

A voltage transfer function is defined as follows

V2 = H'E
g

then for the augmented network

(V2 + AV2) = (H + AH)Eg
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and

AV2 = AH.E (4.22)

Substituting (4.22) into (4.21) yields

2
AH*E = E -V. I Au (4.23)

g i/o o

Since H is a function of V, an incremental change in the voltage

transfer function with respect to the voltage amplification

factor, i, is given by

AH = Z (LH) Ai (4.24)
ill/oil al

Comparing equation (4.24) with the rearranged equation (4.23)

yields

9H 11 Oila 2 (4.25)
E2

g

Letting the excitation voltage and current source, Eg, equalg

to one, gives the voltage transfer function sensitivity with

respect to the voltage amplification factor, il, as the product

of the controlling branch voltage in the original circuit and

the dependent branch current in the mutual reciprocal adjoint

network. This proves the stated result of TABLE 2 which is

repeated here for convenience

a--V. (jw) I (jw)
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B. TRANSITION BETWEEN APPROACHES

The derivation of the sensitivities of a voltage transfer

function in the previous paragraph was carried out in the

frequency domain. The sensitivity model, as stated in Chapter

III, is given in the time domain. To use the derived equations

in the time domain requires further interpretation. For the

original circuit (Fig. 6a) the voltage transfer function was

defined as follows

V2 (s)
H(s) = (5)

g

The sensitivity of the output voltage due to changes of any

kind of passive network parameters, ua, is then given by

DH(s,u )
AV2 (s,u) = E (s) .Au (4.26)

au
a

where the parameter, ua, is itself a function of s and x

such that

ua = u (s,x) (4.27)

Substituting (4.27) into (4.26) and applying the chain rule

yields

yH(s,u ) 3u t
AV(su = E (s) •( ) (a )Ax (4.28)V2 ag uu)

Using for impedance type parameters equation (4.7) in conjunction

with (4.22) and substituting into (4.28) leads to

II

AV 2(s,x) aa (_)Ax (4.29)E (s) ax
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Making the assumption that E (t) is a unit impulse, u, = Z,

and x =* Z, the transition into the time domain of AV2 (s,x)

is given by the convolution of the resistor current in the

original network and the current through the corresponding

resistor in the adjoint network. Then the sensitivity of an

incremental change of the output voltage with respect to

variations in one resistive element is

AV 2(t,R)
2R I (t)*I a(t) (4.30)
AR

If it is required to find the variation of V2 with respect

to all resistive parametezs the changes are added due to the

superposition principle over all branches, a, containing

resistors. Therefore

AV2 (t,R)
= ai (t)*i (t) (4.31)

AR a

For inductive parameters u. = sL and x = L AV2 (t,L) is

determined by the time derivative of the convolution between

the corresponding inductor currents in the original network

and its adjoint. Therefore

AV2 (t,L) d (t) ( (4.32)

AL adt a a

Finally for capacitive elements the sensitivity of V2

due to changes in all capacitors turns out to be the summation

over all capacitive branches of the time derivative of the
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convolution between the voltages across corresponding capacitors

in the original and its adjoint network. Therefore

(tC) - (V *V(t)) (4.33)

Starting with equation (4.29) the computational process

can be simplified by considering the adjoint network (Fig. 8),

excited by a current source, 12, as follows

12 = (--)I (4.34)

The current through the variable parameter, Ia, is then given

by

- V2 (s,x)T ax- (4.35)

Remembering that E (s) is unity in the frequency domain and ag

unit impulse in the time domain, the sensitivity of the output

voltage, AV2, is given by

AV2 (s,x) -
-- Ia (S,X) (4.36)Ax

in the frequency domain, and by

AV2 (t,x) -

- i (t,x) (4.37)

in the time domain.

If the interreciprocity theorem is applied to the circuit

of Fig. 8, interchanging excitation source, 12, and response,
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I , the sensitivity model is obtained as shown in Fig. 9a.

Fig. 9a holds for the frequency domain as well (t replaced by

s). This derivation is valid for all types of passive network

parameters.

For the transition of the dependent sources the voltage

dependent voltage source is chosen, where

- u (s,x) = V (s,i) (4.38)a oii

such that

x=

Equation (4.29) becomes

AV2 (S'1) EgS iO Ali (4.39)

From Fig. 8 the excitation, 12, becomes a voltage source of

value

3 op (s,')
i = o1A (-V. ) (4.40)

Then the current in the dependent branch of the current dependent

current source in the adjoint network, I , gives the desiredoP

sensitivity

~ AV2 (s,1)
I (s) - (4.41)

in the frequency domain and

AV2 (Ct, i)

ii (t) = (4.42)

in the time domain.
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Figure 9: Sensitivity Models Derived by Application
of Tellegen's Theorem and the Mutual
Recprical Adjoint Network
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Interchanging the excitation and the response, referring

to Fig. 8 and Fig. 9a, leads to the sensitivity model of a

voltage dependent voltage source. The excitation voltage source,

12, given in (4.40) has to be transferred into the time domain

such that

DV (t,1j)
i2 (t) = o( , -Vi (t)) (4.43)

Knowing that

av av.
l 0 = 1 - + vi (4.44)

gives

av.
i2 (t) = (1-.-- + vi),(-Vi (t)) (4.45)

The minus sign in front of Vi means that the excitation source

in the sensitivity model has to oppose the normal current flow.

To be consistent with the structure of a dependent source and

the equation (4.45), Vi has to be as follows

avi(t)

Vi (t) v t (4.46)

Substituting (4.46) into (4.45) leads to the sensitivity model

(Fig. 9b) as stated in Chapter III.

C. COMPARISON OF THE TWO APPROACHES

As a main conclusion it can be stated that the sensitivity

model is not an independent method for computation of network

sensitivity but a special case of the mutual adjoint network.
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For sensitivity calculations in the frequency domain with

respect to single element perturbations both methods are

equally well suited. If the total increment in sensitivity

due to variations in several parameters is required, the adjoint

network approach is advantageous because still only a single

excitation is required and the analyses of only two networks

at each frequency point are necessary. This is in contrast

with the use of the sensitivity model where a separate source

is required for each variable element. This requires the

analysis of one network for each parameter at each frequency

point.

In the time domain the sensitivity model is the better

approach, especially if single parameter changes are involved.

The desired sensitivity requires the analysis of one network

only and the answer comes out immediately in the time domain.

In contrast, the adjoint network approach involves the analysis

of two networks and requires convolution of the corresponding

circuit responses. Alternately, in the time domain, the adjoint

network may be excited by a source with backward running time.
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